Warning: Illegal string offset 'id' in /home/baccetbz/public_html/pg-du.com/wp-content/themes/academica/single.php on line 4

Warning: Illegal string offset 'id' in /home/baccetbz/public_html/pg-du.com/wp-content/themes/academica/single.php on line 4

Warning: Illegal string offset 'id' in /home/baccetbz/public_html/pg-du.com/wp-content/themes/academica/single.php on line 4

Warning: Illegal string offset 'id' in /home/baccetbz/public_html/pg-du.com/wp-content/themes/academica/header.php on line 4

Warning: Illegal string offset 'id' in /home/baccetbz/public_html/pg-du.com/wp-content/themes/academica/header.php on line 4

Warning: Illegal string offset 'id' in /home/baccetbz/public_html/pg-du.com/wp-content/themes/academica/header.php on line 4
NASA Rover Finds Old Streambed on Martian Surface

Home » Geomorphology » NASA Rover Finds Old Streambed on Martian Surface

 
 

NASA Rover Finds Old Streambed on Martian Surface

 

Remnants of ancient streambed on Mars

NASA’s Curiosity rover found evidence for an ancient, flowing stream on Mars at a few sites, including the rock outcrop pictured here, which the science team has named “Hottah” after Hottah Lake in Canada’s Northwest Territories. Image credit: NASA/JPLCaltech/MSSS

Rock outcrop called Link

In this image from NASA’s Curiosity rover, a rock outcrop called Link pops out from a Martian surface that is elsewhere blanketed by reddish-brown dust. Image credit: NASA/JPL-Caltech/MSSS

This image shows the topography, with shading added, around the area where NASA's Curiosity rover landed on Aug. 5 PDT (Aug. 6 EDT).

This image shows the topography, with shading added, around the area where NASA’s Curiosity rover landed on Aug. 5 PDT (Aug. 6 EDT). Image credit: NASA/JPL-Caltech/UofA

Map shows the path on Mars of NASA's Curiosity rover toward Glenelg

This map shows the path on Mars of NASA’s Curiosity rover toward Glenelg, an area where three terrains of scientific interest converge. Image credit: NASA/JPL-Caltech/Univ. of Arizona

Rock outcrops on Mars and Earth

This set of images compares the Link outcrop of rocks on Mars (left) with similar rocks seen on Earth (right). Image credit: NASA/JPL-Caltech/MSSS and PSI

PASADENA, Calif. — NASA’s Curiosity rover mission has found evidence a stream once ran vigorously across the area on Mars where the rover is driving. There is earlier evidence for the presence of water on Mars, but this evidence — images of rocks containing ancient streambed gravels — is the first of its kind.

Scientists are studying the images of stones cemented into a layer of conglomerate rock. The sizes and shapes of stones offer clues to the speed and distance of a long-ago stream’s flow.

“From the size of gravels it carried, we can interpret the water was moving about 3 feet per second, with a depth somewhere between ankle and hip deep,” said Curiosity science co-investigator William Dietrich of the University of California, Berkeley. “Plenty of papers have been written about channels on Mars with many different hypotheses about the flows in them. This is the first time we’re actually seeing water-transported gravel on Mars. This is a transition from speculation about the size of streambed material to direct observation of it.”

The finding site lies between the north rim of Gale Crater and the base of Mount Sharp, a mountain inside the crater. Earlier imaging of the region from Mars orbit allows for additional interpretation of the gravel-bearing conglomerate. The imagery shows an alluvial fan of material washed down from the rim, streaked by many apparent channels, sitting uphill of the new finds.

The rounded shape of some stones in the conglomerate indicates long-distance transport from above the rim, where a channel named Peace Vallis feeds into the alluvial fan. The abundance of channels in the fan between the rim and conglomerate suggests flows continued or repeated over a long time, not just once or for a few years.

The discovery comes from examining two outcrops, called “Hottah” and “Link,” with the telephoto capability of Curiosity’s mast camera during the first 40 days after landing. Those observations followed up on earlier hints from another outcrop, which was exposed by thruster exhaust as Curiosity, the Mars Science Laboratory Project’s rover, touched down.

“Hottah looks like someone jack-hammered up a slab of city sidewalk, but it’s really a tilted block of an ancient streambed,” said Mars Science Laboratory Project Scientist John Grotzinger of the California Institute of Technology in Pasadena.

The gravels in conglomerates at both outcrops range in size from a grain of sand to a golf ball. Some are angular, but many are rounded.

“The shapes tell you they were transported and the sizes tell you they couldn’t be transported by wind. They were transported by water flow,” said Curiosity science co-investigator Rebecca Williams of the Planetary Science Institute in Tucson, Ariz.

The science team may use Curiosity to learn the elemental composition of the material, which holds the conglomerate together, revealing more characteristics of the wet environment that formed these deposits. The stones in the conglomerate provide a sampling from above the crater rim, so the team may also examine several of them to learn about broader regional geology.

The slope of Mount Sharp in Gale Crater remains the rover’s main destination. Clay and sulfate minerals detected there from orbit can be good preservers of carbon-based organic chemicals that are potential ingredients for life.

“A long-flowing stream can be a habitable environment,” said Grotzinger. “It is not our top choice as an environment for preservation of organics, though. We’re still going to Mount Sharp, but this is insurance that we have already found our first potentially habitable environment.”

During the two-year prime mission of the Mars Science Laboratory, researchers will use Curiosity’s 10 instruments to investigate whether areas in Gale Crater have ever offered environmental conditions favorable for microbial life.

NASA’s Jet Propulsion Laboratory, a division of Caltech, built Curiosity and manages the Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington.

For more about Curiosity, visit: http://www.nasa.gov/msl andhttp://mars.jpl.nasa.gov/msl .

Guy Webster / D.C. Agle 818-354-5011
Jet Propulsion Laboratory, Pasadena,Calif.
guy.webster@jpl.nasa.gov / agle@jpl.nasa.gov

Dwayne Brown 202-358-1726
NASA Headquarters, Washington
dwayne.c.brown@nasa.gov

 

No comments

Be the first one to leave a comment.

Post a Comment

You must be logged in to post a comment.

Archives

Recent Post

Hacked By Chinafans

Instagram Блеск Instagram Детейлинг Facebook Автостудия Глянец Instagram Автостудия Глянец Facebook Блеск Facebook...

 

Facebook Детейлинг Facebook Автостудия Глянец Instagram Автостудия Глянец Instagram Блеск Instagram Детейлинг Facebook...

 

Issue of this week (21 August, 2016)

Instagram Блеск Instagram Детейлинг Facebook Детейлинг Facebook Блеск Facebook Автостудия Глянец Instagram Автостудия...

 

Very Good News for Bangladesh!!

Instagram Автостудия Глянец Instagram Блеск Facebook Блеск Facebook Автостудия Глянец Facebook Детейлинг Instagram...

 

Issue of this week

Instagram Блеск Facebook Автостудия Глянец Instagram Детейлинг Instagram Автостудия Глянец Facebook Блеск Facebook...

 

Accidental Oil Pollution in the Sundarbans: Preparedness for Response to Ecological Disaster

Facebook Блеск Instagram Автостудия Глянец Facebook Автостудия Глянец Instagram Детейлинг Facebook Детейлинг Instagram...

 

Climate Change Induced Tropical Cyclone and Salinity Intrusion in the Sundarbans: An Impediment to the REDD Programs

Facebook Блеск Instagram Автостудия Глянец Instagram Детейлинг Instagram Блеск Facebook Детейлинг Facebook Автостудия...

 

The Suspended Sediment Loads of Ganges and Brahmaputra basin

Instagram Автостудия Глянец Instagram Детейлинг Instagram Блеск Facebook Детейлинг Facebook Автостудия Глянец Facebook...

 

Modern sediment supply to the lower delta plain of the Ganges-Brahmaputra River in Bangladesh

Instagram Блеск Facebook Детейлинг Instagram Детейлинг Facebook Автостудия Глянец Facebook Блеск Instagram Автостудия...

 
Congratulations to Cricket Team of Geography and Environment

Congratulations to Cricket Team of Geography and Environment

Facebook Автостудия Глянец Facebook Детейлинг Instagram Детейлинг Facebook Блеск Instagram Автостудия Глянец Instagram...

 
 
 

Warning: Illegal string offset 'id' in /home/baccetbz/public_html/pg-du.com/wp-content/themes/academica/footer.php on line 4

Warning: Illegal string offset 'id' in /home/baccetbz/public_html/pg-du.com/wp-content/themes/academica/footer.php on line 4

Warning: Illegal string offset 'id' in /home/baccetbz/public_html/pg-du.com/wp-content/themes/academica/footer.php on line 4